Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities.

Identifieur interne : 002A73 ( Main/Exploration ); précédent : 002A72; suivant : 002A74

Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities.

Auteurs : L. Danielsen ; A. Thürmer ; P. Meinicke ; M. Buée ; E. Morin ; F. Martin ; G. Pilate ; R. Daniel ; A. Polle ; M. Reich

Source :

RBID : pubmed:22957194

Abstract

Fungal communities play a key role in ecosystem functioning. However, only little is known about their composition in plant roots and the soil of biomass plantations. The goal of this study was to analyze fungal biodiversity in their belowground habitats and to gain information on the strategies by which ectomycorrhizal (ECM) fungi form colonies. In a 2-year-old plantation, fungal communities in the soil and roots of three different poplar genotypes (Populus × canescens, wildtype and two transgenic lines with suppressed cinnamyl alcohol dehydrogenase activity) were analyzed by 454 pyrosequencing targeting the rDNA internal transcribed spacer 1 (ITS) region. The results were compared with the dynamics of the root-associated ECM community studied by morphotyping/Sanger sequencing in two subsequent years. Fungal species and family richness in the soil were surprisingly high in this simple plantation ecosystem, with 5944 operational taxonomic units (OTUs) and 186 described fungal families. These findings indicate the importance that fungal species are already available for colonization of plant roots (2399 OTUs and 115 families). The transgenic modification of poplar plants had no influence on fungal root or soil communities. Fungal families and OTUs were more evenly distributed in the soil than in roots, probably as a result of soil plowing before the establishment of the plantation. Saprophytic, pathogenic, and endophytic fungi were the dominating groups in soil, whereas ECMs were dominant in roots (87%). Arbuscular mycorrhizal diversity was higher in soil than in roots. Species richness of the root-associated ECM community, which was low compared with ECM fungi detected by 454 analyses, increased after 1 year. This increase was mainly caused by ECM fungal species already traced in the preceding year in roots. This result supports the priority concept that ECMs present on roots have a competitive advantage over soil-localized ECM fungi.

DOI: 10.1002/ece3.305
PubMed: 22957194
PubMed Central: PMC3433996


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities.</title>
<author>
<name sortKey="Danielsen, L" sort="Danielsen, L" uniqKey="Danielsen L" first="L" last="Danielsen">L. Danielsen</name>
</author>
<author>
<name sortKey="Thurmer, A" sort="Thurmer, A" uniqKey="Thurmer A" first="A" last="Thürmer">A. Thürmer</name>
</author>
<author>
<name sortKey="Meinicke, P" sort="Meinicke, P" uniqKey="Meinicke P" first="P" last="Meinicke">P. Meinicke</name>
</author>
<author>
<name sortKey="Buee, M" sort="Buee, M" uniqKey="Buee M" first="M" last="Buée">M. Buée</name>
</author>
<author>
<name sortKey="Morin, E" sort="Morin, E" uniqKey="Morin E" first="E" last="Morin">E. Morin</name>
</author>
<author>
<name sortKey="Martin, F" sort="Martin, F" uniqKey="Martin F" first="F" last="Martin">F. Martin</name>
</author>
<author>
<name sortKey="Pilate, G" sort="Pilate, G" uniqKey="Pilate G" first="G" last="Pilate">G. Pilate</name>
</author>
<author>
<name sortKey="Daniel, R" sort="Daniel, R" uniqKey="Daniel R" first="R" last="Daniel">R. Daniel</name>
</author>
<author>
<name sortKey="Polle, A" sort="Polle, A" uniqKey="Polle A" first="A" last="Polle">A. Polle</name>
</author>
<author>
<name sortKey="Reich, M" sort="Reich, M" uniqKey="Reich M" first="M" last="Reich">M. Reich</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22957194</idno>
<idno type="pmid">22957194</idno>
<idno type="doi">10.1002/ece3.305</idno>
<idno type="pmc">PMC3433996</idno>
<idno type="wicri:Area/Main/Corpus">002894</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002894</idno>
<idno type="wicri:Area/Main/Curation">002894</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002894</idno>
<idno type="wicri:Area/Main/Exploration">002894</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities.</title>
<author>
<name sortKey="Danielsen, L" sort="Danielsen, L" uniqKey="Danielsen L" first="L" last="Danielsen">L. Danielsen</name>
</author>
<author>
<name sortKey="Thurmer, A" sort="Thurmer, A" uniqKey="Thurmer A" first="A" last="Thürmer">A. Thürmer</name>
</author>
<author>
<name sortKey="Meinicke, P" sort="Meinicke, P" uniqKey="Meinicke P" first="P" last="Meinicke">P. Meinicke</name>
</author>
<author>
<name sortKey="Buee, M" sort="Buee, M" uniqKey="Buee M" first="M" last="Buée">M. Buée</name>
</author>
<author>
<name sortKey="Morin, E" sort="Morin, E" uniqKey="Morin E" first="E" last="Morin">E. Morin</name>
</author>
<author>
<name sortKey="Martin, F" sort="Martin, F" uniqKey="Martin F" first="F" last="Martin">F. Martin</name>
</author>
<author>
<name sortKey="Pilate, G" sort="Pilate, G" uniqKey="Pilate G" first="G" last="Pilate">G. Pilate</name>
</author>
<author>
<name sortKey="Daniel, R" sort="Daniel, R" uniqKey="Daniel R" first="R" last="Daniel">R. Daniel</name>
</author>
<author>
<name sortKey="Polle, A" sort="Polle, A" uniqKey="Polle A" first="A" last="Polle">A. Polle</name>
</author>
<author>
<name sortKey="Reich, M" sort="Reich, M" uniqKey="Reich M" first="M" last="Reich">M. Reich</name>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="eISSN">2045-7758</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fungal communities play a key role in ecosystem functioning. However, only little is known about their composition in plant roots and the soil of biomass plantations. The goal of this study was to analyze fungal biodiversity in their belowground habitats and to gain information on the strategies by which ectomycorrhizal (ECM) fungi form colonies. In a 2-year-old plantation, fungal communities in the soil and roots of three different poplar genotypes (Populus × canescens, wildtype and two transgenic lines with suppressed cinnamyl alcohol dehydrogenase activity) were analyzed by 454 pyrosequencing targeting the rDNA internal transcribed spacer 1 (ITS) region. The results were compared with the dynamics of the root-associated ECM community studied by morphotyping/Sanger sequencing in two subsequent years. Fungal species and family richness in the soil were surprisingly high in this simple plantation ecosystem, with 5944 operational taxonomic units (OTUs) and 186 described fungal families. These findings indicate the importance that fungal species are already available for colonization of plant roots (2399 OTUs and 115 families). The transgenic modification of poplar plants had no influence on fungal root or soil communities. Fungal families and OTUs were more evenly distributed in the soil than in roots, probably as a result of soil plowing before the establishment of the plantation. Saprophytic, pathogenic, and endophytic fungi were the dominating groups in soil, whereas ECMs were dominant in roots (87%). Arbuscular mycorrhizal diversity was higher in soil than in roots. Species richness of the root-associated ECM community, which was low compared with ECM fungi detected by 454 analyses, increased after 1 year. This increase was mainly caused by ECM fungal species already traced in the preceding year in roots. This result supports the priority concept that ECMs present on roots have a competitive advantage over soil-localized ECM fungi.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">22957194</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-7758</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities.</ArticleTitle>
<Pagination>
<MedlinePgn>1935-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.305</ELocationID>
<Abstract>
<AbstractText>Fungal communities play a key role in ecosystem functioning. However, only little is known about their composition in plant roots and the soil of biomass plantations. The goal of this study was to analyze fungal biodiversity in their belowground habitats and to gain information on the strategies by which ectomycorrhizal (ECM) fungi form colonies. In a 2-year-old plantation, fungal communities in the soil and roots of three different poplar genotypes (Populus × canescens, wildtype and two transgenic lines with suppressed cinnamyl alcohol dehydrogenase activity) were analyzed by 454 pyrosequencing targeting the rDNA internal transcribed spacer 1 (ITS) region. The results were compared with the dynamics of the root-associated ECM community studied by morphotyping/Sanger sequencing in two subsequent years. Fungal species and family richness in the soil were surprisingly high in this simple plantation ecosystem, with 5944 operational taxonomic units (OTUs) and 186 described fungal families. These findings indicate the importance that fungal species are already available for colonization of plant roots (2399 OTUs and 115 families). The transgenic modification of poplar plants had no influence on fungal root or soil communities. Fungal families and OTUs were more evenly distributed in the soil than in roots, probably as a result of soil plowing before the establishment of the plantation. Saprophytic, pathogenic, and endophytic fungi were the dominating groups in soil, whereas ECMs were dominant in roots (87%). Arbuscular mycorrhizal diversity was higher in soil than in roots. Species richness of the root-associated ECM community, which was low compared with ECM fungi detected by 454 analyses, increased after 1 year. This increase was mainly caused by ECM fungal species already traced in the preceding year in roots. This result supports the priority concept that ECMs present on roots have a competitive advantage over soil-localized ECM fungi.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Danielsen</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thürmer</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meinicke</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Buée</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morin</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pilate</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Daniel</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reich</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Community ecology</Keyword>
<Keyword MajorTopicYN="N">environmental DNA</Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
<Keyword MajorTopicYN="N">genetically modified organisms</Keyword>
<Keyword MajorTopicYN="N">metagenomics</Keyword>
<Keyword MajorTopicYN="N">microbial biology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>05</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>05</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22957194</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.305</ArticleId>
<ArticleId IdType="pmc">PMC3433996</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 May;111(Pt 5):509-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Dec;112(4):1479-1490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2005 Jun;109(Pt 6):661-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16080390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Nov;17(5):1105-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1932684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Jul;68(7):3328-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12089011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2004 Oct;14(5):295-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2009 Aug;90(8):2098-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19739372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 May;111(Pt 5):549-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Apr 1;332(6025):53-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2007 Jan;111(Pt 1):3-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2001 Dec;11(6):283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24549348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1993 Apr;2(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Mar;19 Suppl 1:41-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20331769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 25;277(5325):504-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20662149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):314-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 May;21(4):297-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20886243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Aug;32(8):992-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19344334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Sep;71(9):5544-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1996 Sep;11(9):372-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2010 Jun;20(5):315-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19921284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Mar;76(6):1831-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Sep;77(17):5934-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D25-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):449-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):239-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Oct;184(2):438-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674337</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Buee, M" sort="Buee, M" uniqKey="Buee M" first="M" last="Buée">M. Buée</name>
<name sortKey="Daniel, R" sort="Daniel, R" uniqKey="Daniel R" first="R" last="Daniel">R. Daniel</name>
<name sortKey="Danielsen, L" sort="Danielsen, L" uniqKey="Danielsen L" first="L" last="Danielsen">L. Danielsen</name>
<name sortKey="Martin, F" sort="Martin, F" uniqKey="Martin F" first="F" last="Martin">F. Martin</name>
<name sortKey="Meinicke, P" sort="Meinicke, P" uniqKey="Meinicke P" first="P" last="Meinicke">P. Meinicke</name>
<name sortKey="Morin, E" sort="Morin, E" uniqKey="Morin E" first="E" last="Morin">E. Morin</name>
<name sortKey="Pilate, G" sort="Pilate, G" uniqKey="Pilate G" first="G" last="Pilate">G. Pilate</name>
<name sortKey="Polle, A" sort="Polle, A" uniqKey="Polle A" first="A" last="Polle">A. Polle</name>
<name sortKey="Reich, M" sort="Reich, M" uniqKey="Reich M" first="M" last="Reich">M. Reich</name>
<name sortKey="Thurmer, A" sort="Thurmer, A" uniqKey="Thurmer A" first="A" last="Thürmer">A. Thürmer</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22957194
   |texte=   Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22957194" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020